STRUCTURES OF XESTOSPONGIN A, B, C AND D, NOVEL VASODILATIVE COMPOUNDS FROM MARINE SPONGE, XESTOSPONGIA EXIGUA

Masashi Nakagawa* and Mamoru Endo

Suntory Institute for Biomedical Research Mishima-Gun, Osaka 618, Japan

Nobuo Tanaka and Lee Gen-Pei

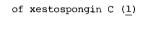
Institute for Protein Research, Osaka University Suita City, Osaka 565, Japan

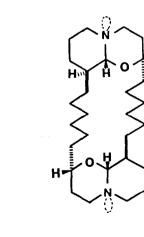
Summary: Xestospongin A,B,C and D represent a new class of macrocyclic 1-oxaquinolizidines, have been isolated from Australian sponge <u>Xestospongia</u> exigua. The structure of xestospongin C has been determined by X-ray analysis.

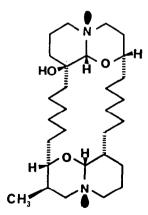
Xestospongin A,B,C and D isolated from the Australian marine sponge, <u>Xestospongia</u> exigua, which are vasodilative compounds induce relaxation of blood vessel <u>in vivo</u>.¹ In the following we report the structures of these compounds.

Xestospongin C[1: $C_{28}H_{50}N_2O_2$,² mp 149-150°C(from ether); [α] -2.4°(c 0.54, CHCl₃); EI-MS, m/z 446(M⁺)] shows IR(KBr) absorption at 2769 cm⁻¹ assignable to Bohlmann bands³ but no OH, NH and NH₂ groups were observed. The ¹H NMR⁴ spectrum(360 MHz) of <u>1</u> showed the presence of two CH groups attached to N and O atoms(10-H, 10'-H), two gruops attached to O atoms(2-H, 2'-H), one high field proton(3 α -H) and four low field CH₂ signals. The ¹³C NMR spectrum (INEPT) exhibited the presence of 22 CH₂ and 6 CH gruops. Single crystals of <u>1</u> were submitted to X-ray analysis: orthorhombic, space groups P222, a=16.771(2), b=16.386(2), c=9.799(1) Å, Z=4, Dm=1.103(by flotation method), Dc=1.101 cm⁻¹.

The three dimensional intensity data from a colorlss and well shaped crystal(0.4 X 0.3 X 0.2 mm) were collected on the Rigaku AFC diffractometer equipped with the rotation anode generator(40kv-200mA), using Ni-filtered Cu-Ka radiation. The ω -20 scanning mode was applied with $20=120^{\circ}$, the number of the measured reflections being 2438. The direct method MULTAN⁵, revealed the positions of 27 atoms fragments of 32 non-hydrogen atoms by the starting refinement set. After least-squares refinement and Fourier synthesis yielded the positions of another 5 non-hydrogen atoms. The complete model refinement was carried out by the block-diagonal-matrix least-square method⁶ with anisotropic temperature factors and given a final R value of 0.06. The position of N and O atoms were definitely found from their numbers of bonds, because all hydrogen atoms were located without any ambiguity. All bond lengths and angles were


Figure 1. Perspective view


7 8


H

3

	<u>1</u>	2	3	4
C-2	76.18(d)	76.54(d)	75.35(d)	76.28(d)
C-3	26.41(t)	26.67(t)		26.29(t)
C-4	53.26(t)	53.00(t)	53.35(t)	52.74(t)
C-6	46.03(t)	44.86(t)	54.55(t)	44.66(t)
C-7		21.74(t)		21.38(t)
C-8		23.69(t)		23.43(t)
C-9	40.84(d)	70.90(s)	40.95(d)	70.64(s)
C-10	88.18(d)	91.33(d)	96.32(d)	91.08(d)
C-2'	75.50(d)	75.50(d)		82.22(d)
C-3'				28.69(d)
C-4'	54.85(t)	54.71(t)		61.10(t)
C-6'	54.85(t)	54.71(t)		46.56(t)
C-9'	41.43(d)	41.07(d)		40.83(d)
C-10'	96.22(d)	96.09(d)		87.72(d)
C3'-Me				14.62(q)

1 R=H

н

4 '

10' D

6'

8

2 R=OH

Table I. ¹³C NMR of xestospongins(90 MHz, in CDCl₃)

4

3

close to the expected values. The mean bond lengths are 1.530 Å(1.508-1.530 Å) for C-C,1.465 Å for C-O. The interesting feature of the molecule is that the central twenty-membered monocyclic ring adopts the energetically favorable and stable rectangular[4646] conformation with a size of 4.5 X 6.8 Å; its peripheral heterocyclic C,D-rings constitute a trans-decalin system whereas the A,B-rings adopt a cis-fused non-steroidal conformation.⁷

Xestospongin D[2: $C_{28}H_{50}N_2O_3$, mp 156-157°C(from ether); [α] +18.43°(c 1.08, CHCl₃); EI-MS, m/z 462(M⁺); IR(KBr) 3533(OH), 2762 cm⁻¹(Bohlmann bands)] showed similar ¹H NMR⁸ and ¹³C NMR spectral data with <u>1</u>, the only conspicuous difference being caused by the hydroxy group at C-9, i.e., 10-H changes from a doublet(δ 4.40) to a singlet(δ 4.77) and the C-9 is shifted from δ 40.84 to δ 70.90 (s).

Xestospongin A[3: $C_{28}^{H}_{50}N_{2}O_{2}$, mp 135-136°C(from ether); [α] +6.90°(c 0.84, CHCl₃); EI-MS, m/z 446(M⁺); IR(KBr) 2812, 2758 cm⁻¹(Bohlmann bands)] is isomeric with 1. The ¹³C NMR(INEPT) spectrum showed only 14 signals and the ¹H NMR⁹ spectrum only showed peaks due to rings C/D besides CH₂ groups. The structure of 2 thus possesses a point of symmetry.

Xestospongin B[4: $C_{29}H_{54}N_2O_3$, mp 179-181°C (from ether); [α] +7.10° (c 0.91, CHCl₃); EI-MS, m/z 477 (M⁺+1); IR (KBr) 3521 cm⁻¹ (OH)] showed no Bohlmann bands in the IR spectrum thus suggesting that it lacks the trans quinolizidine system. The 10-H and 10'-H signals¹⁰ appeared at the low field of δ 4.17, 4.40 due to effects of the lone pair electrons of tertiary nitrogens.¹¹ These data support that both bicyclic rings in <u>4</u> adopt cis-fused non-steroidal conformation as in the A,B-rings of <u>1</u> and <u>2</u>. The similarity in the ¹H NMR and ¹³C NMR signals arising from A,B-rings in <u>4</u> and <u>2</u> suggests the ring structure to be same. The ¹H NMR showed the presence of secondary CH₃ at δ 0.51; its position was deduced from the coupling patterns of the 4' α -H(δ 2.83,dd,J=13.4, 4.5 Hz) and 4' β -H(δ 2.72,dd,J=13.4, 11.0 Hz) signals. Studies on the absolute comformation and biogenesis of the xestospongins which represent a new class of macrocyclic 1-oxaquinolizidines are under investigation.

Acknowledgments: We thank Dr.T.Noguchi, Director of Suntory Institute for Biomedical Research, for encouragement, Dr.T.Ishihara and Mr.K.Aisaka for pharmacological tests, and Dr.T.Iwashita, Suntory Institute for Bioorganic Research, for NMR measurments.

References

- (1) Details of biological activities will be reported elsewhere.
- (2) Satisfactory elemental analysis and high resolution EI-MS were obtained for <u>1</u> and <u>2</u>.
- (3) F.Bohlmann, <u>Angew. Chem., 69</u>, 641 (1957); M.Uskokovic, H.Bruderer, C.von Planta, T.Williams, A.Brossi, J. Am. Chem. Soc., 86, 3364, (1964).
- (4) H NMR (360 MHz, C_6D_6) 4.40 (brd, J=1.4 Hz, H₁₀), 3.48 (brt, J=10.9 Hz, H₂), 3.30 (brt, J=10.8 Hz, H₂), 3.13 (d, J=8.6 Hz, H₁₀), 3.12 (m, H_{6α}), 2.82 (dd, J=13.5, 3.0 Hz, H_{4α}), 2.64 (brd, J=11.2 Hz, H_{6'α}), 2.36 (brd, J=10.9 Hz, H_{6β}), 2.04 (ddd, J=12.0, 12.0, 2.8 Hz, H_{4'β}), 0.77 (brd, J=13.0 Hz, H_{3α}).
- (5) P.Main, S.E.Hull, L.Lessinger, G.Germain, J.P.Declerq, M.M.Woolfson, "MULTAN 78". A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York & Louvain, 1978.
- (6) T.Asada, "NISCS Program System"; Crystallographic Research Center, Institute for Protein Research, Osaka University, Osaka, 1979;pp 53..
- (7) The automatic co-ordinates will be deposited at the Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield road, Cambridge CB2 IEW, England.
- (8) H NMR (360 MHz, $C_{6}D_{6}$) 4.17 (s,H₁₀), 3.43 (brt,J=11.0 Hz,H₂), 3.28 (brt,J=11.0, Hz,H₂), 3.13 (d,J=8.5 Hz,H₁₀), 2.94 (ddd,J=11.1,11.1,3.4 Hz,H₆), 2.88 (ddd, J=12.6,11.1,3.4 Hz,H), 2.78 (ddd,J=11.2,3.9,1.9 Hz,H), 2.68 (dd,J=12.6, 4.5 Hz,H), 2.65 (brd,J=11.3 Hz,H).
- (9) H NMR(360 MHz, C_6D_6) 3.28(brt, J=11.5 Hz, H₂), 3.06(d, J=9.1 Hz, H₁₀), 2.75 (ddd, J=11.0, 4.1, 2.5 Hz, H₄ $_{\alpha}$), 2.60(brd, J=10.3 Hz, H₆ $_{\alpha}$), 2.00(ddd, J=11.0, 11.0, 2.7 Hz, H₄ $_{\beta}$), 1.87(ddd, J=10.3, 10.3, 2.5 Hz, H₆ $_{\beta}$).
- (10) H NMR (360 MHz, $C_{6}D_{6}$) 4.40 (brd, H_{101}), 4.17 (s, H_{10}), 3.43 (brt, J=11.3 Hz, H_{2}), 2.95 (ddd, J=13.7, 13.7, 2.7 Hz, $H_{6\alpha}$), 2.90 (ddd, J=13.7, 13.7, 3.3 Hz, $H_{4\beta}$), 2.68 (brd, $H_{4\alpha}$), 2.45 (brd, J=10.2 Hz, $H_{61\beta}$), 2.09 (brd, J=13.7 Hz, $H_{6\beta}$), 0.65 (brd, J=13.5, Hz, $H_{3\alpha}$), 0.51 (d, J=6.5 Hz, $C_{31\beta}$ -Me).
- (11)W.E.Rosen, Tetrahedron Lett., 481,(1961); W.E.Rosen, J.N.Shodery, J. Am. Chem. Soc., 83,4816(1961).

(Received in Japan 24 March 1984)